Modelling and Prediction of Reactive Power at Railway Stations Using Adaptive Neuro Fuzzy Inference Systems
نویسندگان
چکیده
Electricity has become an important concern in today’s society. This is due to the fact that electric grid now a greater number of non-linear components. The AC-powered locomotive one these aim this paper was model and predict reactive power produced by AC locomotive. presents study on modelling prediction locomotives. Reactive flow significant impact network voltage levels efficiency. research conducted using intelligent techniques—more precisely, adaptive neuro fuzzy inference system (ANFIS). Several approaches ANFIS structure were used research. Of these, we mention ANFIS-grid partition, subtractive clustering c-means (FCM) clustering. Thus; for predicting power, trained, then tested. For training ANFIS, experimental data obtained from measurements performed train supply sub-station used. taken over period time when locomotives far away station, close at respectively. currents voltages substation, respectively active, reactive, distorted powers, measured acquisition board. With with performed, variation made. analysed results comparing between several types architectures. values RMSE, RMS compared structures ANFIS.
منابع مشابه
Prediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system
Multi-walled carbon nanotubes (CNTs) are synthesized with the assistance of water vapor in a horizontal reactor using methane over Co-Mo/MgO catalyst through chemical vapor deposition method. The application of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for modeling the effect of important parameters (i.e. temperature, reaction time and amount of H2O vapor) on the qualit...
متن کاملPrediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system
Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...
متن کاملPrediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system
Multi-walled carbon nanotubes (CNTs) are synthesized with the assistance of water vapor in a horizontal reactor using methane over Co-Mo/MgO catalyst through chemical vapor deposition method. The application of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for modeling the effect of important parameters (i.e. temperature, reaction time and amount of H2O vapor) on the qualit...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملPrediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt
In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app13010212